AP Calculus AB – Summer Assignment Are You Ready for Calculus?

Name_____

Directions: Complete the following problems on separate paper to turn in after coming back to school in the Fall.

1. Simplify: (a)
$$\frac{x^3 - 9x}{x^2 - 7x + 12}$$
 (b) $\frac{x^2 - 2x - 8}{x^3 + x^2 - 2x}$ (c) $\frac{\frac{1}{x} - \frac{1}{5}}{\frac{1}{x^2} - \frac{1}{25}}$ (d) $\frac{9 - x^{-2}}{3 + x^{-1}}$

2. Rationalize the denominator: (a)
$$\frac{2}{\sqrt{3}+\sqrt{2}}$$
 (b) $\frac{4}{1-\sqrt{5}}$ (c) $\frac{1}{1+\sqrt{3}-\sqrt{5}}$

3. Write each of the following expressions in the form ca^pb^q where c, p and q are numbers:

(a)
$$\frac{(2a^2)^3}{b}$$
 (b) $\sqrt{9ab^3}$ (c) $\frac{a(2/b)}{3/a}$ (d) $\frac{ab-a}{b^2-b}$ (e) $\frac{a^{-1}}{(b^{-1})\sqrt{a}}$ (f) $\left(\frac{a^{2/3}}{b^{1/2}}\right)^2 \left(\frac{b^{3/2}}{a^{1/2}}\right)$

4. Solve for x (do not use a calculator):

(a)
$$5^{(x+1)} = 25$$
 (b) $\frac{1}{3} = 3^{2x+2}$ (c) $\log_2 x = 3$ (d) $\log_3 x^2 = 2\log_3 4 - 4\log_3 5$

5. Simplify: (a) $\log_2 5 + \log_2 (x^2 - 1) - \log_2 (x - 1)$ (b) $2 \log_4 9 - \log_2 3$ (c) $3^{2 \log_3 5}$

6. Simplify: (a)
$$\log_{10} \left(10^{1/2}\right)$$
 (b) $\log_{10} \left(\frac{1}{10^x}\right)$ (c) $2\log_{10} \sqrt{x} + 3\log_{10} x^{1/3}$

7. Solve the following equations for the indicated variables:

(a)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
, for a (b) $V = 2(ab + bc + ca)$, for a

(c)
$$A = 2\pi r^2 + 2\pi r h$$
 , for positive r (d) $A = P + n r P$, for P

(e)
$$2x - 2yd = y + xd$$
, for d (f) $\frac{2x}{4\pi} + \frac{1-x}{2} = 0$, for x

8. For the equations (a) $y = x^2 + 4x + 3$ (b) $3x^2 + 3x + 2y = 0$ (c) $9y^2 - 6y - 9 - x = 0$ complete the square and reduce to one of the standard forms $y - b = A(x - a)^2$ or $x - a = A(y - b)^2$.

9. Factor completely: (a)
$$x^6 - 16x^4$$
 (b) $4x^3 - 8x^2 - 25x + 50$ (c) $8x^3 + 27$ (d) $x^4 - 1$

10. Find <u>all</u> real solutions to: (a) $x^6 - 16x^4 = 0$ (b) $4x^3 - 8x^2 - 25x + 50 = 0$ (c) $8x^3 + 27 = 0$

11. Solve for
$$x$$
: (a) $3\sin^2 x = \cos^2 x$; $0 \le x < 2\pi$ (b) $\cos^2 x - \sin^2 x = \sin x$; $-\pi < x \le \pi$ (c) $\tan x + \sec x = 2\cos x$; $-\infty < x < \infty$

12. Without using a calculator, evaluate the following:

(a)
$$\cos 210^{\circ}$$
 (b) $\sin \frac{5\pi}{4}$ (c) $\tan^{-1}(-1)$ (d) $\sin^{-1}(-1)$

(e)
$$\cos \frac{9\pi}{4}$$
 (f) $\sin^{-1} \frac{\sqrt{3}}{2}$ (g) $\tan \frac{7\pi}{6}$ (h) $\cos^{-1}(-1)$

13. Given the graph of $\sin x$, sketch the graphs of:

(a)
$$\sin\left(x - \frac{\pi}{4}\right)$$
 (b) $\sin\left(\frac{x}{2}\right)$ (c) $2\sin x$ (d) $\cos x$ (e) $\frac{1}{\sin x}$

14. Solve the equations: (a) $4x^2 + 12x + 3 = 0$ (b) $2x + 1 = \frac{5}{x+2}$ (c) $\frac{x+1}{x} - \frac{x}{x+1} = 0$

15. Find the remainders on division of: (a) $x^5 - 4x^4 + x^3 - 7x + 1$ by x + 2. (b) $x^5 - x^4 + x^3 + 2x^2 - x + 4$ by $x^3 + 1$.

- 16. (a) The equation $12x^3 23x^2 3x + 2 = 0$ has a solution x = 2. Find all other solutions.
 - (b) Solve for x, the equation $12x^3 + 8x^2 x 1 = 0$. (All solutions are rational and between ± 1 .)
- 17. Solve the inequalities (a) $x^2 + 2x 3 \le 0$ (b) $\frac{2x-1}{3x-2} \le 1$ (c) $x^2 + x + 1 > 0$
- 18. Solve for x: (a) $|-x+4| \le 1$ (b) |5x-2| = 8 (c) |2x+1| = x+3
- Determine the equations of the following lines: (a) the line through (-1,3) and (2,-4);
 - (b) the line through (-1,2) and perpendicular to the line 2x-3y+5=0;
 - (c) the line through (2,3) and the midpoint of the line segment from (-1,4) to (3,2).
- 20. (a) Find the point of intersection of the lines: 3x y 7 = 0 and x + 5y + 3 = 0
 - (b) Shade the region in the x-y plane that is described by the inequalities $\begin{cases} 3x-y-7 < 0 \\ x+5y+3 \geq 0 \end{cases}$.
- 21. Find the equations of the following circles:
 - (a) the circle with centre at (1, 2) that passes through the point (−2, −1);
 - (b) the circle that passes through the origin and has intercepts equal to 1 and 2 on the x− and y – axes, respectively.
- 22. For the circle $x^2 + y^2 + 6x 4y + 3 = 0$, find:
 - (b) the equation of the tangent at (-2,5)(a) the centre and radius;
- 23. A circle is tangent to the y-axis at y=3 and has one x-intercept at x=1.
 - (a) Determine the other x-intercept. (b) Deduce the equation of the circle.
- 24. A curve is traced by a point P(x,y) which moves such that its distance from the point A(-1,1) is three times its distance from the point B(2,-1). Determine the equation of the curve.
- 25. (a) Find the domain of the function $f(x) = \frac{3x+1}{\sqrt{x^2+x-2}}$.
 - (b) Find the domain and range of the functions: i) f(x) = 7 ii) $g(x) = \frac{5x 3}{2x + 1}$
- 26. Let $f(x) = \frac{|x|}{x}$. Show that $f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$. Find the domain and range of f(x).
- 27. Simplify $\frac{f(x+h)-f(x)}{h}$, where (a) f(x)=2x+3 (b) $f(x)=\frac{1}{x+1}$ (c) $f(x)=x^2$.
- 28. The graph of the function y = f(x) is given as follows:

- 29. Sketch the graphs of the functions: (a) g(x) = |3x + 2| (b) h(x) = |x(x-1)|
- (a) The graph of a quadratic function (a parabola) has x−intercepts −1 and 3 and a range consisting of all numbers less than or equal to 4. Determine an expression for the function.
 - Sketch the graph of the quadratic function $y = 2x^2 4x + 3$.